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Abstract

Incorporating the effects of larger-amplitude deflection and electro-elastical properties of piezoelectric lamina, the
Hamilton’s variation principle was used to deduce the fundamental formulations of smart anisotropic composite plate
in Part I in terms of Reddy’s simple higher-order theory. In order to solve the five highly coupled nonlinear partial dif-
ferential equations with complicated overlapping boundary conditions, a novel numerical method-Hermite differential
quadrature (HDQ) method was developed to implement the differential equations with complicated overlapping bound-
ary conditions. Based on the presently developed HDQ method, any orders derivatives of the unknown functions or any
boundary conditions can be point-collocation-based discretized by a set of point-values along x- and y-direction. Then,
a system of complete algebraic nonlinear equations can be constructed to calculate out the final point-values of the mid-
plane displacements by using the governing equations and relative boundary conditions with HDQ method. Finally,
some detailed numerical examples for the anisotropic piezoelectric/composite laminate with the distributed poling
directions of piezoelectric layer and fiber orientations of composite layers were studied to validate the developed the-
oretical analysis model and HDQ numerical method.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing uses of the adaptive/intelligent structures and systems integrated with piezoelectric materials
as actuators/sensors in the field of engineering have attracted world-wide researchers’ attentions. From the
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viewpoint of design and optimization, it is important and necessary to theoretically predict the static and
dynamic electro-mechanical characteristics of composite plate contained piezoelectric layers firstly (Kenji,
1998). Up to now, many researchers had afforded their best to model and investigate the mechanical and
electric characteristics of piezoelectric/composite plate so as to reveal the actuating and sensing properties
of piezoelectric materials in the smart structures and systems. However, most of these works were based on
the classic laminated plate theory or first-order shear deformation theory with the analytical method or the
FEM method for some cases (Crawley and Anderson, 1989; Lee, 1990; Pai et al., 1993; Tzou and Zhong,
1993; Donthireddy and Chandrasha, 1996; Zhang and Sun, 1996; Liu et al., 1999; Seeley and Chattopad-
hyay, 1999; Cheng et al., 2000; Cheng and Batra, 2000; Gopinathan et al., 2000; Wu et al., 2001; Fernandes
and Pouget, 2002). On the other hand, with the wider and wider applications of composite structure in the
field of engineering, the high accuracy models are demanded for the better understanding of the mechanical
properties of composite structure. However, it is a challenge for people to solve the highly coupled govern-
ing equations, especially the nonlinear ones, of anisotropic composites. Up to date, only some analytical
solutions for the special laminated plates/shells in some special boundary conditions had been successfully
worked out by assuming the special Fourier series solution (Hobson, 1926; Whitney and Leissa, 1970;
Chaudhuri, 1989). In order to overcome the limitation of the analytical solution, the numerical methods
have been widely employed to carry out the final results though their accuracy has been discounted, includ-
ing the FEM, FDM and point-collocation-based methods etc. Since the point-collocation-based numerical
methods can overcome some shortcomings of FEM, such as remeshing and needing more memory etc., they
have provoked many researchers’ interests. Differential quadrature (DQ) method, as one of the main point-
collocation-based numerical methods, has been verified as an effective numerical method to solve the dif-
ferential equations with boundary conditions (Bellman and Casti, 1971; Villadsen and Michelsen, 1978;
Bert and Malik, 1996; Bellomo, 1997; Shu, 2000). But, it is also not easy to implement the overlapping
boundary conditions case even though some works had been done by Liu and Wu (2001a,b). Here, it is
clearly shown in Part I that the fundamental formulations of anisotropic PZT/composite laminate are five
highly coupled nonlinear partial differential equations with complicated overlapping boundary conditions.
Therefore in this paper, we based on the famous Hermite interpolation theorem to develop a new general-
ized differential quadrature method, here called as generalized Hermite differential quadrature (HDQ)
method. In the light of the developed generalized HDQ method, the overlapping boundary conditions
can be casily implemented as well as the governing equations can be easily discretized by a set of point-val-
ues along x- and y-direction. Then, a system of complete algebraic nonlinear equations can be obtained
to calculate the scattered point-values of the mid-plane displacements. Furthermore, some electro-elastic
properties of anisotropic PZT/composite laminate with the different poling directions and boundary
conditions were detailedly analyzed by the presently developed theoretical analysis model and HDQ
method.

2. Development of a numerical method: Hermite differential quadrature

From the theoretical analysis of Part I, it is obviously presented that the governing formulations of the
smart laminated composite plate presented by the mid-plane displacements are consisted of third-order par-
tial differentiation of u, vy, ¢, and ¢, and fourth-order partial differentiation of w, with respect to x and y
as follows:

ON? 0Ny,
Lyjug + Ligvo + L1z, + Liagp, + Liswo + q, — +
Ox )%
aW() 6w0 . T 4 631"70
—L —L =1 1 —=— 1
=+ o 1,1Wo + o 12wo = Loty + 119, 35502 (la)



J. Cheng et al. | International Journal of Solids and Structures 42 (2005) 6181-6201 6183

ON7 Ny,
Lyyug + Lopvo + Loy + Loadp, + Loswo + g, — —

o
ow ow 4, ’w
+—— - L12W0+$L22W0—10U0 +11¢ 3 3y 6:2’ (1b)
2 om” oM, 4 4 (or? ory
Lsyug + L3 ovo + Lz, + L3agp, + L3 swo +§mx - [ ax’ + ayy -0+ ﬁsf aEYs (g + ayy
L ow dwo 4 w
6 2 LysWo + = 3 — Loswy = Lyiig + Trp, — 6 atOZ’ (Ic)
’ oM*  om” 4 4 (or; oTY,
Ly jug + Lygpvo +L4,3¢x+L444¢y+L4,5W0+§my - [ ay} + axy N Q—erﬁS;) Y a_nyr ox
6w0 @ 4 a %)
+§L1,4Wo+ 3 L24W0 = Iyl +12¢ 3 6 o (1d)
om, Om,
Lsyug + Lspvo + Ls 3, + Lsagp, + Lsswo — q+ +—=
3\ ox Oy
ook an? 4 (@17 OT,, 4 T\ 4 (os” 0S)
. e
6x dy VAN 0xdy  3h* 02 »\ox 0y
6w0 ow Wo 0 aWO aW() 0 aW() 6W0
—L L —(N,—+ N, — —(N,—+N,,—
T sty 2’5W0+6x< o ay) +6y< ' 6y>
4\ 0 (@w, Owy\ 4 O [duy v
I . Wy 2 0 (G T
[ oW + <3h2> o <ax2 * 6y2> 30 36t2(6t * 6t>
4 _ O [0p, 09,
‘W"‘a_ﬂ(ax * ay) e

with the following pre-loaded boundary conditions.
Along the edges x = ay, a»
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It is explicitly indicated that the above governing equation set is a high-order coupled nonlinear differ-
ential equation system, including five variables to be determined, and each boundary edge has six pre-
loaded boundary conditions. Therefore, it is almost impossible for someone to use analytical solutions
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to work it out except some special cases. Then, the numerical methods become the quite considerable solu-
tion tools to solve the coupled nonlinear differential equations system (Bellman and Casti, 1971; Villadsen
and Michelsen, 1978; Bert and Malik, 1996; Malik and Bert, 1996; Bellomo, 1997; Shu, 2000). Due to the
reason of large-deflection effect and existence of the overlapping boundary conditions for the present sol-
ving problem, we have to abandon the common FEM method and here develop a new differential quad-
rature method, called as Hermite differential quadrature (HDQ) method, to solve the highly coupled
nonlinear differential equations with the prescribed overlapping boundary conditions.

As is well known, any function f{x) can be approximated by an interpolation function ¥(x) with a set
of undetermined weighted coefficients #(x) at an increscent discrete point set {xp,x»,...,xy}, such as
Lagrange interpolation, Chebyshev interpolation, as follows:

S =) =3 Wi, 2)

where f; is the point value of function f{x) at the ith point.

The basic idea of differential quadrature (DQ) method can be originated from the ordinary differential
equation. Similar to differential theorem, the rth order derivation of the unknown function f{x) at any dis-
crete points can be obtained by the rth order derivative of the interpolation function, namely, a weighted
linear sum of the function values at all the discrete points {x;,x,,...xn},
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where the superscript 7 in the bracket denotes the rth order derivative. Al(.; ) are the weighted coefficients for
the rth order derivative at the point x; of DQ method. For a common Lagrangian interpolation theorem
always used in DQM, the weighted coefficients W(x) in Eq. (3) can be presented by

P,(x)

Wile) = 1) = P )

(i=12,...,N), (4)

where P,(x) is a polynomial and P,(x) = (x — x1)(x — X2)- - - (x — xy). P\ (x) is the first-order derivative of
P,(x). It is obvious that the weighted coefficients have the delta function characteristics. Further, the kth
order derivative of the weighted coefficients WW(x) for the Lagrange interpolation can be obtained by

; (x’)_%P?I)(x) forx=x; andk=1,...,n (5a)
and
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Thus, the weighted coefficients Af-]'f) can be obtained

A® = 19 (). (6)
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For a two-dimensional case, the above weighted coefficient construction method can be extended to con-
struct the weighted coefficients in a 2-D case as follows:

flxy) = Zz feny) (G=12,...,M), (7a)

fxi,y) Zg, f(iy) (i=1,2,...,N) (7b)

and further

Y) =20 L(x)g0)f (xi, ), (7c)

=1 j=I
where g/(y) is the Lagrangian interpolation along the y-direction and constructed in a same process as /{x).
Similarly for the kth order derivative of g(y), we also have

B =¢(v,). (8)

The above formulation derivation is a general formula constructing procedure for the common differen-
tial quadrature (DQ) method. Although the DQ method has been verified as a much effective numerical
method to solve the differential equations, it is hard to implement the overlapping boundary condition
problems in the engineering, such as Bernoulli-Euler beam and classical plate etc. Therefore, we here based
on the Hermite interpolation theorem to develop a new generalized differential quadrature method, called
as generalized Hermite differential quadrature (HDQ) method, which much considers the exact approxima-
tion up to the first-order differential of unknown function at an interpolated point. As is well known, the
general expression of Hermite interpolation theorem for an unknown function in a set of discretization
points {x; < x, <---<Xxp} in one-dimensional case can be presented by

N+R

= Zhi(x)f(xi) + Z hi(x)f W (x;) = ZHi(x)Fi, )

where N is the total discrete point number in an interpolation domain. R is the number of those interpo-
lated points where the interpolation function and its first-order differential are required to be equal to the
point-values of the unknown function and its first-order d1ﬁ“erent1a1 respectwely, and, 1 < R< N. Here,

F) = {fsfo oo S 0 /DY and [H]) = {hi(x), . (), (%), (@)} Bi(x) and By(x) are
the weighted functions of the interpolation function and its ﬁrst order diﬂerentlal of the interpolation func-
tion in the ith point respectively. It is very noted that the weighted functions /{x) and #;(x) must have the
following characteristics based on Hermite interpolation theory:
hi(x))=0; (,j=1,2,....,N);  nx)=0 (i=12,....N; j=1,2,...,R), (10a)
h(x)=0 (i=12,...R j=12,....N); h’(x)=0 (i,j=12,...,R). (10b)
And, the generalized Hermite differential quadrature can be further obtained for the kth order differen-
tial as follows:
axk 4 Oxk

SO =
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In order to determine the weighted functions, we can assume the following general expressions of /(x) and
h;(x) to satisfy the above four equations (i.e., Eq. (10)):
() lin(x) I (x), i=1,2,...,R
h,—(x) = {
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hi(x) = si(x —x) I () lie(x), i=1,2,...,R, (12b)

where f7(x) is a polynomial to be determined and s; an unknown constant. Clearly, h{(x) € H,+, and
hi(x) € M. Here, P,(x) = (x — x)(Xx — X2)---(x — x,) and /,, is the Lagrangian interpolation for the total
scattered points’ set NV and /; is the Lagrangian interpolation for the partial scattered points’ set R.

Substitution of the above assumed solutions, i.e. Eq. (12), into the requirement Eq. (10) can obtain the
unknown polynomial z{x) and constant s;

() =1—-(x—x)[IV )+ 1V (x)] and s;=1 (i=1,2,...,R). (13)

Up to now, the general equations of Hermite interpolation function ¢(x) for the unknown function f{x)
are completely set up. Here, some extreme cases can be carried out as follows:

While r = 0, the interpolation function can be reduced to the general Lagrange interpolation function.

While r = n, the weighted functions in Eq. (12) become

=

/.\
=

N
|

=20 —x) V) [lm®), i=1,2,...,N, (14a)
hi(x) = (x — xi)[lin(x)]z. (14b)

Clearly, this result was known as Hermite’s interpolation formula (Hermite, 1878).

In this paper, we cared more about how to solve the boundary value differential equations with the over-
lapping boundary conditions, such as the Bernoulli-Euler beam and classical plate etc. For most of over-
lapping boundary condition problems, it is clear that R is equal to 2, i.e. the two boundary points x; and
xpy- Thus, only substituting x; and x into Egs. (12) and (13), we can easily and directly obtain the detailed
weighted function of HDQ method written as follows:

e (150)
e e (150)
Iy (x) = {1 - (x—xl)(zﬁif(xl) 5 _IXNH zln(x)x’j:’;v, (15¢)
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hi(x) = (= x1)x — xy) Lu(x), j=2.3,....N—1. (15¢)

(rj = x1)(x; — xn)

Exactly, these results are same to the expressions of the generalized differential quadrature method devel-
oped by Liu and Wu (2001a,b). It is noted that our developed Hermite differential quadrature method is
more simple and convenient to obtain the weighted functions than Liu and Wu’s GDQ method, especially
for those cases of i > 2. In the case of i > 2, we can directly obtain the weighted functions by using Eqgs. (12)
and (13) but Liu and Wu’s GDQ method need re-construct the interpolation functions based on the
Hermite interpolation characteristics, about which the detailed advantages and discussion can be referred
to Cheng (in press).
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For a two-dimensional case, the Hermite interpolation ¢(x,y) of present HDQ method for the unknown
function can be presented in a same manner as the differential quadrature method as

= Z ihi(x)h./(Y)f(xf7Yj) + Z le(y)}_zi(x) M) (xi,3,) + Z Zl 0 (xi,3)).

=1 j=1

(16)

Based on the above constructed Hermite differential quadrature interpolation, the generalized Hermite
differential quadrature expressions for the mth order x-derivatives at any point (x; ;) can be written as
follows:

amd)(x”y Nx+Ry .
= ZHlka,, i=1,2,...,N,, j=12,...,N,. (17)

In a same manner, the generalized Hermite differential quadrature expression for the nth order x-deriv-
atives at any point (x;);) can be obtained

arl Ny+Ry,

xn
yj _Z 717 1_12 Xa]_lz ya (18)

where L ;i 1s the welghted coefficient for the scattered points along y-direction and can be constructed in a
same process to Hlk .

Similarly, the generalized Hermite differential quadrature expression for a mix derivative has the follow-
ing form:

6("’+'1>q5(x« y N, Ny Ny Ny+R, Ny NytRy
X oy =1 =1 =1 k=ny+1 [y —
i=1,2,...,N,, j=1,2,...,N,, (19)

where the weighted coefficients 4 and B are defined in Egs. (6) and (8).

3. Application and discretization

In this section, the presently developed theory model for anisotropic piezoelectric/composite plate and
numerical HDQ method are employed to study and verify the electro-elastic behavior of a typical three-
layer sandwich anisotropic plate contained with the piezoelectric core layer which has a spatially distributed
poling direction, as shown in Fig. 2 of Part I. While the distributed poling angle «, =0 and 8, =0, the
extension-twisting coupling of anisotropic piezoelectric/composite plate was developed to be the driven ele-
ment in the rotary motor by Lee et al. (1998). Here, we make this rotary motor element as an example, i.e.
anti-symmetrical laminated fiber reinforced composite plate with a PZT-5H plate core. Thus, it is clear that
the following general stiffness components of the anti-symmetrical piezoelectric/composite laminate are
Zero:

A6 = Aze = B11 = Bi1a = Bes = F11 = Fi12 = Fos = D16 = Das = His = Hys = J1c = Jos =0 and Ays=
Dys = Hys = 0.
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Then, the static governing equations for the anti-symmetrical piezoelectric/composite laminated plate
can be simplified from the Eq. (1) as follows:
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and the relevant stress resultants and moments can be also presented by the mid-plane displacement func-
tions as
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where the underline terms are related to the large-deflection effect terms.
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From the above mentioned boundary conditions, it is found that only the boundary conditions about W
are overlapping boundary conditions. Then, based on the developed generalized Hermite differential quad-
rature method, we only set R =2 to construct the interpolation function for the unknown function wy
otherwise use R =0 to form the interpolation functions for other unknown functions uy, vy, ¢, and ¢,,
and then substitute them into governing equations to obtain the discrete equations in any interior point
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Similarly, the force resultants can be also discretized by the interpolation functions as follows:
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The clamped boundary condition along x-axis must be satisfied as follows:

Wy =up = Uy = P, = 4’_— 0. (22a)
The free condition along x-axis must be satisfied as follows:
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The simply-supported boundary condition along x-axis must be satisfied as follows:
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Along y-axis, the similar overlapping boundary conditions can be obtained in terms of the relative
boundary conditions of Part I. Then, using the constructed interpolations and the discretized force resul-
tants, we can also obtain the relevant discretization boundary conditions for the prescribed boundary con-
ditions. Here, the point values of the applied electric field induced resultant forces and moments are also
directly obtained in the scattered points with the following difference and integration:

6H()é; Xo) 5(x — xo), /f (x —x0) = f(x0),

which can be further used to describe the partially covered electrode distribution of piezoelectric layer.
Now, combining the discrete governing equations and relevant boundary conditions, a complete set of alge-
braic expressions for the solving problem can be obtained and solved to carry out the final point-values of
mid-plane displacements in all the scattered points.



6194 J. Cheng et al. | International Journal of Solids and Structures 42 (2005) 6181-6201

4. Numerical results and discussion

In accordance with the above theoretical analysis model and developed numerical method-HDQ, we can
numerically calculate the behavior of PZT-5H/Composite laminated sandwich plate with the different pol-
ing direction of PZT layer and different fiber orientation of composite layer by Mathematica Software.
Here, the material constants of PZT-5H lamina with the thickness 1 mm and the fiber reinforced epoxy
composite lamina with 1 mm are presented in Table 1.

In order to improve the simulation efficiency and accuracy (Shu, 2000), Chebyshev polynomial is signi-
ficantly utilized to construct the simulation scattered points within the dimensionless simulation domain
[0,1] in this simulation as follows:

Sc—l l—cosi_ln and *—1 1—cosi_1n
) N, —1 Y73 N,—17)
Therefore, the above governing equations and relative boundary conditions are respectively transferred
into the dimensionless formulations by using x =% and y = 5.
Now, a PZT/composite anti-symmetrically laminated plate with one edge clamped (x = 0) and other

edges free and poling direction o, =0, , =0 of PZT layer is considered as the first validation example.
After substituting the relative equations and constructed weighted functions into the governing equations

Table 1
The material properties of composite and piezoelectric lamina
Material Material coefficients
E; (GPa) E, (GPa) G2 (GPa) Ga3 (GPa) 12 023 ds; (m/V) dy3 (m/V)
Composite 138 8.96 7.1 0.3 0.45
Piezoelectric 61 61 233 19.1 0.31 0.31 —274E—-12 S593E-12

Deflection W(m)

15

2K
0 0.02 0.04 006 0.08 0.1 0.12

0.14 0.16

Fig. 1. The deformation shape of PZT/composite anti-symmetrically (+-45°) laminated square plate (0.15 m x 0.15 m) with the poling
direction o, o, = 0° under the action of electric field E5 = 500 kV/m.
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and boundary conditions as shown in Section 3, the final nonlinear discretization algebraic equations
about the point-values of mid-plane displacements can be obtained and directly calculated by the Newton’s
method for all the simulation examples via the Mathematica code. According to the numerical results, the
deformation shape of PZT/composite anti-symmetrically laminated plate under the action of electric field is
displayed as anti-symmetrical extension-twisting shape as Fig. 1 and the anti-symmetrical maximal deflec-
tions always occur along the free edge x = a. About the effect of large-amplitude deflections, the nonlinear
results in the present analysis are larger than the linear ones as shown in Fig. 2. These comparisons clearly
confirmed that the large-amplitude deflection effect must be considered in the theoretical analysis about the
PZT/composite laminated plate. Moreover, the effects of the length—width ratio a/b on the deflection along

0.08 ——m4— ™ ——————————1—————
o‘oel-\ - O+ - Linear results _

\ —24— Nonlinear results

End edge strain

-0.08 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n T

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
y(m)

Fig. 2. The comparison between the linear results and nonlinear results to show the nonlinear effect on the end edge strain for a given
condition.

0.0003

——a/b=10 (a=0.15m)
--4&--a/b=5 (a=0.15m) o
0.0002 —O—a/b=3 (a=0.15m) £
o] —O—al/b=1 (a=0.15m)

0.0001

4
0.0000 yﬁg

-0.0001

Delfection W,(m)

-0.0002

/
o

-0.0003

-0.07-0.06-0.05-0.04-0.03-0.02-0.010.00 0.010.020.030.040.050.06 0.07
y(m)

Fig. 3. The detailed effect of the ratio a/b of length and width on the deflection of PZT/composite laminated plate with &, + 45° along
the edge x = a at E3 = 500 kV/m.
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the free edge (x = a) are depicted in Fig. 3 and show that the maximal deflection can be achieved by choos-
ing the suitable ratio a/b. It is obviously found that the maximal deflection of PZT/composite plate with the
distributed fiber orientation can be achieved while the ratio a/b is equal to 3. Simultaneously, Fig. 4 pre-
sents the effects of length-width ratio a/b on the deflection along the free edge (y = 0) and indicates that
the y-axial deflections are nonlinear for the different length—width ratio a/b, particularly for a/b = 3. For
the influence of composite lamina fiber orientation o,., the numerical results of Fig. 5 reveal the end edge
deflections of the anti-symmetric PZT/composite plate can be changed with the fiber orientation and reach
the maximal deflection at the fiber orientation o, = +60° among the simulated cases. It is noted that the

T T T T T T T T T T T T
0.00020 4]
—O—a/b=1 o]
0.00015 --<7—-a/b=10 D/ i
L --O--a/b=5 / J
000010 - |--A-- a/b=3 g -
0.00005 |- u/ i
E 3 D/ |
= 0.000008<2g . _ -
= R S T ]
S -0.00005 |- S e T T s Vmmmm I
s r ool
% -0.00010 - Al TTo--l L o
o L . e
-0.00015 |- i
a. ]
-0.00020 |- Al E
AL .
-0.00025 | -T
1 " 1 1 1 1 1 1 "

-0.06 -004 -0.02 000 002 004 006
X(m)

Fig. 4. The detailed effect of the length-width ratio a/b on the deflection of PZT/composite laminated plate with o, 4- 45° along the
edge y =0 at E3 = 500 kV/m.

0.00035 ——————————T———T————————

0.00030 —0— 0,=10° - -0 - 0,=20° .
0.00025%:.. ol =30° =37 0 =45° .
000020 e | O 0, =260° =<Fo- 0, =70° .
0.00015 —>— 0,=80°

0.00010
0.00005
0.00000 |
-0.00005 |
-0.00010 |
-0.00015

Deflection W,(m)

-0.00020 [
-0.00025
-0.00030

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
y(m)

Fig. 5. The effect of the distribution angle of fiber reinforced direction of composite laminate on the end edge deflection along x = a of
PZT/composite laminated plate with the ratio a/b = 1.
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end-edge deflection shape at o, = +20° is much different from the other fiber orientations. Further, the
influences of applied electric field on the deformations of PZT/composite plate with the fiber orientation
o = +45° and poling direction o, = 0, 5, = 0 are shown in Figs. 6 and 7. The numerical calculations show
that the maximal end-edge deflections can increase nonlinearly with the increment of applied electric field.
Moreover, as is well known, the covered electrode area of the PZT core layer is also as a designable factor
to take into calculation, as shown in Fig. 8. It is obviously revealed from Fig. 8 that the covered electrode
area can play an import role on the plate deformation. And, the numerical simulations show that the max-
imal deflection of PZT/composite plate can be obtained by only partially covered electrode area in the re-
gion [a/4,a] % [0,b] for a given condition.

0.00025 -
0.00020
0.00015

0.00010

0.00005

0.00000

-0.00005

Deflection W (m)

-0.00010

-0.00015

-0.00020

-0.00025 B
1 L 1 L 1 L 1 L 1

-0.02 -0.01 0.00 0.01 0.02
y(m)

Fig. 6. The influence of the applied electric field on the end edge deflection W) of the PZT/composite anti-symmetrically laminated
plate with the distribution o, = +45° and ratio a/b = 3.

0.00025 B
—&— a/b=3 /
0.00020 / -

0.00015 | / _
0.00010 / 4

0.00005 | / -

0.00000 / -

L 1 L 1 L 1 L 1 L
0 100 200 300 400 500
Applied Voltage (V)

Maximal deflection (m)
n

Fig. 7. The effect of the applied electric field on the maximal deflection of PZT/composite anti-symmetrically laminated plate with the
distribution angle o, = +45° and ratio a/b = 3.
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On the other hand, the effects of the PZT poling direction on the composite plate mechanic behaviors are
also investigated in present paper. Fig. 9 shows the deformation of square PZT/composite plate with the
fiber orientation o, = £45° and poling direction a, = 90° and f, = 90°, which is positive nonsymmetrical
deflection and different from the plate with the fiber orientation o, = £45° and poling direction o, = 0°

00003 — 7y
Electrode area |
- <> - [0,a]*[0,b] >
OV —o— (a2l i
RN -0+~ [a/2,a]*[0,b]
0.0001 %~ > o <A+ [3a/4,a]"[0,b] i
E I
% 0.0000
S
]
o)
“g -0.0001
-0.0002
00003 v oy

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
y(m)

Fig. 8. The effect of the electrode covered area of PZT lay on the edge deflection of PZT/composite laminated plate with the fiber
orientation o, = +45° and ratio a/b =3 at x = 0.

x10

Deflection W(m)

Fig. 9. The deformation shape of PZT/composite anti-symmetrically (+45°) laminated square plate (0.15 m x 0.15 m) with the poling
direction o, f5, = 90° under the action of electric field £5 = 500 kV/m.
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0.0012

Jy —D—up=0°, B;FOO
L -0 - 0,790°, B,=30° [
00008, s A 090", B,=45” ||
: ~ A -+ -- 0,=90° B,=60°

F S ey =00° R =00° | |
0.0006 S 5, | 0 0,790° p=00° ||

0.0004

0.0002

End edge deflection W,(m)

0.0000

-0.0002

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
y(m)

Fig. 10. The influences of the poling direction of PZT lay on the edge deflection of PZT/composite laminated plate with the fiber
orientation o, = +45° and ratio a/b =1 at x = 0.

and f8, = 0°. For the detailed effects of the poling direction on the maximal end-edge deflections, Fig. 10
indicates that the maximal end-edge deflection of the PZT/composite plate can be obtained by integrating
the core piezoelectric layer with the poling direction a, = 90° and 5, = 45° under the action of electric field.

From all of the above numerical results, it is explicitly presented that the deformation behavior of PZT/
composite laminate plate can be changed through both the fiber orientation of composite material layer and
the poling direction and electrode covered area of piezoelectric layer. The maximal deflection of the lam-
inated plate can be accomplished by choosing the suitable factors as investigated in the above numerical
studies.

5. Conclusion

Based on Hermite interpolation theory, a new generalized Hermite differential quadrature (HDQ)
method was developed to easily implement the overlapping boundary conditions for the high-order cou-
pling differential equations. Then, using the developed generalized HDQ method, the present high-order
coupling nonlinear differential equations for the anisotropic piezoelectric/composite plate can be discretized
by a set of unknown point-values of mid-plane displacements to form a complete set of algebraic equations
system and then solved to work out the final solutions for the point values of mid-plane displacements. Fi-
nally, some detailed simulations for smart laminated plate integrated with the piezoelectric plate having a
spatial distributed poling direction were studied to validate the developed theory model for piezoelectric/
composite plate and numerical method-generalized Hermite differential quadrature method.
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Appendix A

The stiffness matrix components for the PZT lamina, composite lamina and PZT/composite laminate are
shown as following:

4
Gy = Bis — == Fs,

30
4
G, = By _WF%’
Gz = Ay + Aes,
8 16
Gy = Auy *ﬁD44+FH447
8 16
Gs = Ass —ﬁDss-FFHss’
8 16
G = Ass *FD45 +FH45’
8
G; = Dy _WHIM
Gs =D 8 He + 16.]
8 — 66 3h2 66 9h4 665
8 16
Gy = Dyy — —=Hopy + — T,
9 2 = gatnt o)y

32 3’
G2 = D12 + Des —%(le-i-Heﬁ) +1—64(J12 +J6s),
3h 9h
Gi3 :iz {le + 2H s *iz(-flz +2«]66)]-
3h 3h
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